RADIAL NERVE INJURIES
Orthoses, Nerve repairs and transfers, Tendon transfers

Learning Objectives

• Identify treatments appropriate while waiting for nerve function to return
• Understand prerequisites helpful for the variety of functional orthoses choices for radial nerve palsy
• Define three surgical managements for radial nerve palsy
• Identify effective training strategies for return of motion following surgeries to restore function following radial nerve palsy
Radial Nerve: Most frequently injured UE peripheral nerve

- Low:
 - PIN: ECRB, supinator, digit intrinsic extensors, ECU, APL
 - DSRN: Dorsal radial hand
- Intermediate (humeral fx): loss of ECRL
- High (proximal to pectoralis insertion) loss of: Triceps, Anconeus, BR

Remaining function

- Gravity assisted elbow extension
- Biceps and brachialis-Elbow flexors
- Biceps-forearm supination
- APB-thumb abduction
- PIP and DIP extension-intrinsics
Patient deficits impacting function
Differential evaluation

- Impaired motor function and planning
- Impaired sensation
- Changes to sensorimotor cortex
- Maladaptive compensatory movements - whole body
- All impacting function
Patient deficits

Differential evaluation

- MT unit shortening (flexors)
- Joint stiffness/contracture
- MT unit elongation (extensors)
- Impaired proprioception and sensation
- Secondary deficit of decreased grip/pinch strength
- Include in pre operative treatment

Waiting for return of function in radial nerve musculature

- Prevent/treat secondary tissue shortening and joint stiffness
Waiting for return of function in radial nerve musculature

• Patient education
• GMIT
• Neuropathic pain
• Neural mobility
 – Tension in one location, release in another

Waiting for return of function in radial nerve musculature

• Functional performance: imagery
• Uninvolved joint, entire limb function
• Pre-transfer/repair training/motor learning aptitude
 – Acquisition, Retention, Transfer, Efficiency
Orthotic intervention

- Patient and tissue specific
- Prevent contractures/MT unit shortening/overstretch to denervated muscles
- Function/comfort-compensatory orthoses.
- Limit maladaptive compensatory movement patterns
Wrist co-contraction and limited passive extension
Surgical options when recovery of function does not occur

Nerve repair

• Wait and see (3-4 mos.) from initial injury
• 12-18 month time period for re-innervation for humeral level injuries
• Motor end plates have limited time frame for re-innervation
• End to end repair or nerve graft required
Nerve Repair Referral Details

- Tension on repair?
- Nerve graft?
- Simultaneous tendon transfers?

Nerve Repair: Post Op

- Resting orthosis (may need to include elbow) – 3 weeks
- Functional orthosis and pre-op therapy until reinnervation of motors is noted
- Therapy intervention (discussed with nerve transfers)
Nerve Transfer (motor and sensory)

- Transfer innervated nerve/fascicles to a denervated nerve to provide re innervation to target motor fibers or sensory end organs
- Perform closer to end organ—allows earlier re innervation than nerve repair/graft at injury site
- Avoids surgery in prior scarred areas, can perform before achieving tissue equilibrium distally
 - Moore AM, Novak CB: Advances in nerve surgery, JHT 2014
Nerve Transfer (motor and sensory)

- Doesn’t require muscle amplitude/excision changes that tendon transfers require
- Synergistic muscle actions from donor and recipient nerves preferred

Example of nerve transfer: median to radial

- FDS nerve to ECRB nerve
- FCR nerve to PIN nerve
- LABC nerve to RSN nerve
- May supplement with tendon transfer: PT to ECRB
 - Davidge KM et al: Median to radial nerve transfers for restoration of wrist, finger, thumb extension, JHS (AM) 2013
 - Tung TH, Mackinnon SE: Nerve Transfers: indications, techniques and outcomes, JHS (AM) 2010
 - Garcia-Lopez A. et al: Nerve transfers from branches to FCR and PT to reconstruct the radial nerve, JHS (AM) 2014
Nerve Transfer Referral Information

- Tension on transfer?
- Nerve graft used?
- Simultaneous tendon transfer?

Nerve Transfer: Post operative considerations

- 7-10 days protective orthosis: proximal/distal ROM, neuropathic pain control.
- If concomitant tendon transfer: protection of transfer requires additional immobilization time (4 weeks)
 - Novak CB: Rehabilitation following nerve transfers, Hand Clinics 2008
 - https://youtu.be/5Vm16opyS4g
Nerve Transfer: Early re-ed

- Observe muscle twitch in re innervating musculature around 3-4 mos. post op
- Isometrically resist donor motor and assist transferred motor
- Short range
- High rep, low load, avoid fatigue
- Some of the same facilitation techniques as for tendon transfers

Task based intervention

- Is task: serial, discrete or continuous
- What is the environment
- Skill level:
 - Early-cognitive, novice
 - Middle-associative
 - Late-expert, automatic
Task based intervention

• Schedule for practice
 – Massed: greater practice than rest, forced use
 – Distributed: practice is spread out, greater rest
 – Random: Several different tasks. Better for learning, Not helpful for complex skills, helpful to transfer to a new task
 – Blocked: one task is repeated. Better for performance and retention

Task based interventions

• Break task into parts
 – Practice each step of a sequence separately OR
 – Practice the task with one body part at a time

• Put the parts together
 – Forward: 1, 1and 2, 1,2, and 3. Less errors
 – Backward: 3, 2 and 3, 1,2 and 3
Late phase

- Patterning
- Resist once range is effective
- Simultaneous tendon transfer may impact strengthening time frame

Tendon transfers: wrist/digits

- PT to ECRB
- FCR/FCU/FDS III to EDC (EIP, EDM)
- FDS IV to EIP and EPL
- PL to EPL
- Varies if PIN only or also loss of ECRL
- Complications: inadequate tension, rupture, attenuation, adhesions, nerve injuries
Pre Operative considerations

• Supple PROM and soft tissue extensibility
• Strengthen donor musculature
• Sensory deficits persist

Referral details

• Specific transfers
• Quality of transfers-pulvertaft weave or side to side
• Tendon grafts needed
• Tension of the transfer
Tendon Transfer: Early phase

- Post operative orthosis: for 4 weeks. Long arm with elbow at 90 and wrist and fingers extended. IPJ’s may be free.
- 4 Weeks: Perform original motion of donor, progress to the transferred motion. Synergistic transfers make the motor learning process easier.
- EAM programs: Activate transfer at end range and limit motion that would elongate the transfer

Avoid elongation of transferred muscle for 6-8 weeks..or longer
Resisted FCR for Digit Extension

Resisted FDS for Thumb Extension

Resisted opposite PT for wrist extension

Overflow from opposite limb

Permission to reproduce required: S. Blackmore
Strategies for re-education

• Minimize co-contractions-relax or contract antagonist to “feel” relaxation
• Simultaneous motion with transferred muscle and recipient muscle at the same time. Isometric contraction in neutral range
• Gradually eliminate transferred movements
• Brief exercise episodes only at first, successful reps
 • Schwartz, D: IN: Fundamentals of hand therapy, 2014

Strategies for re-education

• Place and hold techniques
• Tapping, vibration
• Gravity-eliminated or gravity-assisted plane
• Perform desired motion on uninvolved limb-overflow
• Bilateral motion or activities
• Portions of functional tasks
• Biofeedback
• NMES (Neuromuscular Electrical Stimulation)??
 • Schwartz, D, IN: Fundamentals of Hand Therapy 2014
Strategies for re education

• Avoid composite motion which may elongate the transfer.
• Limit resistance until activation is effective

Some clinical images thanks to

• Karen Stewart-Pettengill MS, OTR/L, CHT
We Learn By Doing

Brains are wired through hands-on interaction with the physical world

Permission to reproduce required: S. Blackmore

Select MEDICAL
Improving Quality of Life
selectmedical.com